Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester

Analysis I

Final examination Total Marks: 110

Maximum marks: 100

Date: Nov. 6, 2013

Time: 3 hours

- 1. Suppose $\{a_n\}_{n\geq 1}$ is a bounded sequence and $\{b_n\}_{n\geq 1}$ is a sequence converging to 0 as n tends to ∞ . Show that $\{a_nb_n\}_{n\geq 1}$ converges to 0 as n tends to ∞ .
- 2. Let $\{x_n\}_{n\geq 1}$ be a bounded sequence of real numbers and $c=\liminf_{n\to\infty}x_n$. Show that for any $\epsilon>0$ the set $M_{\epsilon}=\{n:x_n< c-\epsilon\}$ is a finite set. [10]
- 3. Show that the polynomial $p(x) = 3x^5 + 2x^3 + 6x + 5$ has exactly one real root. [10]
- 4. Let X be the set of all finite subsets of \mathbb{N} . Show that X is countable. [20]
- 5. State and prove the mean value theorem (you may assume Rolle's theorem). [20]
- 6. Let $f, g : [0, 1] \to \mathbb{R}$ be continuous functions. Define h, k on [0, 1] by $h(x) = \text{Min}\{f(x), g(x)\}$ and $k(x) = \text{Max}\{f(x), g(x)\}$. Show that h, k are continuous. Give examples to show that both h, k need not be differentiable, even if f, g are differentiable. [20]
- 7. Suppose $a: \mathbb{R} \to \mathbb{R}$ is a function such that

$$a(\frac{x+y}{2}) \leq \frac{a(x)+a(y)}{2} \quad \ x,y \in \mathbb{R}.$$

(i) Show that for all $n \geq 2$ and for all x_1, x_2, \ldots, x_n in \mathbb{R} ,

$$a\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) \le \frac{1}{n}\sum_{i=1}^{n}a(x_i).$$

(ii) If a is continuous show that

$$a(px + (1 - p)y) \le pa(x) + (1 - p)a(y)$$

for all $x, y \in \mathbb{R}$ and $0 \le p \le 1$. (Hint: First prove the result for rational numbers p.)